Quadratic Equations

James Blackburn

January 2022

1 Proving the α β formulas

 Define the quadratic equation with the variables a,b,c
                 ax2 + bx+ c = 0

      Let α = x1 (The first r√oot of the equation)
                   --b+--b2 --4ac
               α =       2a
     Let β = x2 (The second root of the equation)
                        √-2-----
               β = - b---b---4ac
                         2a
Prove the formula α +β = --b is true (via substitution)
              √-------  a     √-------
         --b+--b2-- 4ac + --b--b2 --4ac
               2a              2a
                                   - 2b-
                                 = 2a
                                    - b
                                 =  a
  Prove the formula αβ = c-is true (via substitution)
               √ ------a       √-------
          --b+---b2---4ac  --b---b2 --4ac
                2a      ×       2a
          (- b + √b2 --4ac)(- b- √b2---4ac)
        = -------------4a2-------------
                         2   √ -2-----2
                   = (--b)--- (-b2---4ac)
                            24a 2
                         = b---(b---4ac)-
                                4a2
                                  = 4ac
                                    4a2
                                    = c-
                                      a
(1)

(2)

(3)

(4)

(5)

(6)

(7)

(8)

(9)

(10)