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1 Using the angle between two vectors
First of all, we can define the 2x2 matrix inversion in the variable R as:

Where 6 is the anti-clockwise angle of rotation.
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The general form of vectors is:

Now let’s take the identity matrix:
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Now, let’s take the vector of the positive x-axis and the positive y-axis:
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And rotate this by the matrix R:
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Using this function, we can give evidence of the dot product between two
vectors.

The dot product is defined as such (where a and b are random variables):
Ta X Tp + Ya X Yb
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This can be re-arranged to find 6 (theta):
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Now let’s find the rotation between @ & & and b & d-
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Therefore, we have proved that the rotation matrix R rotates a vector by the
angle 6.



Alongside this proof, we have also managed to prove another fact: Given any
2d matrix, one can instantly tell if it’s a rotation matrix by the following test:

A= [‘2 Z} (11)
Vat+c2=1 (12)
V2 +d? =1 (13)

Because:

Vcos?0 + sin?6 =1 (14)
vV sin?0 + cos?0 = 1 (15)

2 Clockwise or anti-clockwise

Considering that a rotation is always going to be in the range 0 < 6 < 360 and
considering the 3 functions we use in the matrix R are sinf, cosf and —sin#,
we can plot these functions onto a graph:
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Figure 1: Domain: 0 < 6 < 360, Range: —1 < f(0) <1



Now, let’s consider what an anti-clockwise and clockwise rotation actually is.
Because we know that the matrix R gives an anti-clockwise rotation, we know

that 0 < 6 < 180 is anti-clockwise, hence 180 < 6 < 360 is clockwise.
Let’s zoom in to the cos @ graph:
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Figure 2: Domain: 0 < 6 < 360, Range: —1 < f(0) <1
Can you see how it doesn’t matter whether the rotation is clockwise or anti-
clockwise? It is negative or positive in either of these cases. This means we can
forget about the cosine graph for now! Let’s move onto sin§ and — sin 6!
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Figure 3: Domain: 0 < 6 < 360, Range: —1 < f(9) <1
Can you see how the graphs converge at 180°7 This means that in the domain
0 < 6 < 180 (anti-clockwise), 0 < sinf < 1 and —1 < —sinf < 0. Hence, for
the domain 180 < 6 < 360 (clockwise), —1 <sinf < 0 and 0 < —sinf < —1.
But what does this actually mean for a mathematician? Well, it means,
given the following rotation matrix:

We can see that Bjo (the top right corner) is negative. Therefore, it is an
anticlockwise rotation!
Now let’s take another matrix C"
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We can see that Ca; (the bottom left corner) is negative. Therefore, it is a
clockwise rotation!



